Bangkok | 22 - 25 | July 2025

Department of Computing 雷子計算學系

Enhance Learner Engagement Through Experiential Learning in a Gamified Simulation: A Longitudinal Study

Chen Li, Jeff K. T. Tang, Ye Jia*, Yufei Lu, Peter H. F. Ng, Laura Zhou, Jing Liu and Qing Li

Presenter: Ye Jia

The Hong Kong Polytechnic University

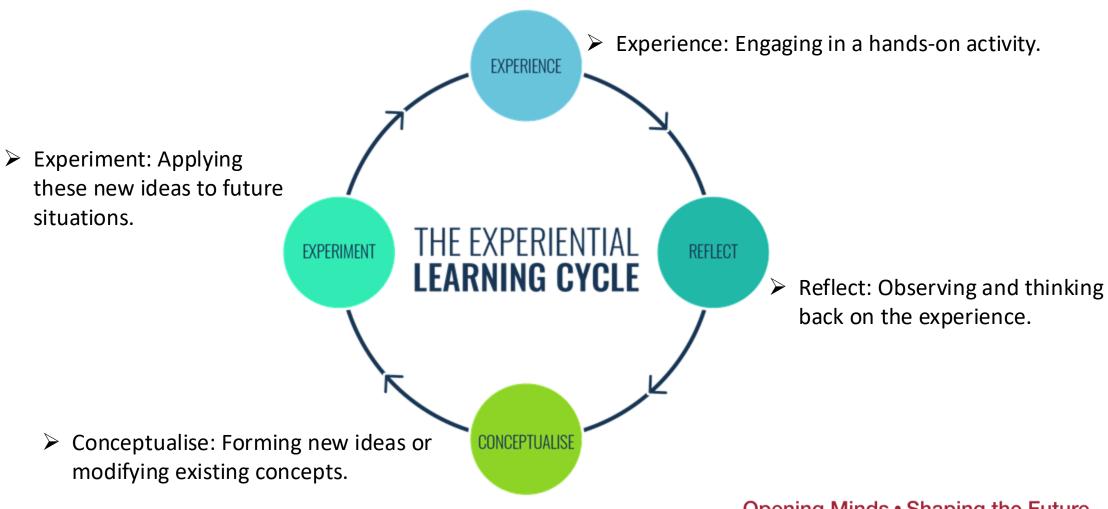

		Page
I.	Introduction	3
II.	Research Questions	6
III.	Methodology	7
IV.	Results	13
V.	Discussion of Key Findings	17
VI.	Conclusions and Future Work	20

Table of

Contents

I. Introduction: Experiential Learning

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice Hall.

Introduction: Gamified Simulation

- > The Goal in Education:
 - ✓ More compelling
 - ✓ More interactive.
- > The Ideal Platform- Virtual Reality
 - ✓ Interactive
 - ✓ Controllable

I. Introduction: Research Gap

- > Applying Learning Theory: A lack of clear methods for effectively applying learning theories directly into game design.
- > Systematic Integration: Limited exploration on how to systematically build experiential learning principles into a game's core mechanics.
- ➤ Aligning Gameplay with Goals: A need for more empirical evidence to ensure game mechanics truly align with and support educational objectives.

II. Research Questions

- ➤ RQ1: Can experiential learning in gamified simulations better enhance learners' behavioural, affective, and cognitive engagement compared to traditional learning methods?
- ➤ RQ2: Does experiential learning in gamified simulations lead to better knowledge gain and retention compared to traditional learning methods?
- ➤ RQ3: What factors may influence the observed knowledge gain and retention?

II. Methodology

Gamified Simulation of Fitts' Law

$$MT = a + b \cdot ID = a + b \cdot log_2(\frac{2D}{W})$$

- MT is the average time to complete the movement.
- **a** and **b** are constants for input devices
- ID is the index of difficulty.
- D = distance moved
- **W** = target width or size

Conceptual/ Abstract

Gamified Dashboard

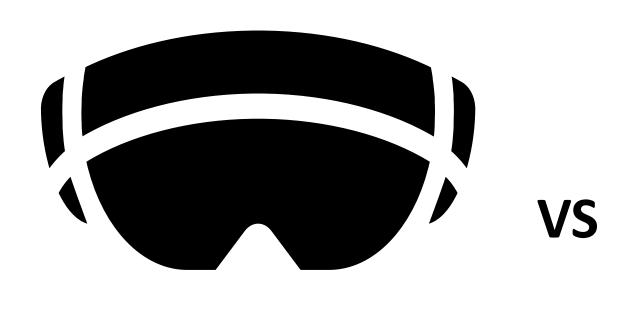
III. Methodology

Gamified Simulation of Fitts' Law: Game One Aim Ball

- > Change the width of the balls
- > Change the distance to the balls

II. Methodology

Gamified Simulation of Fitts' Law: Game Two UX Improvement Method

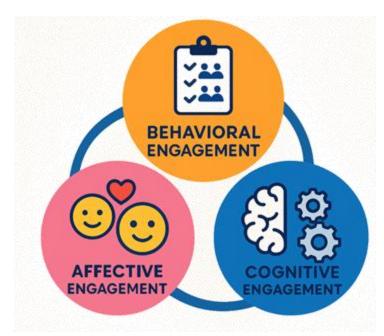


- > Add the visual feedback
- > Add the sound feedback
- ➤ Mix visual & sound feedback

II. Methodology

Experiment Design: Between Subject Design

Wikipedia Document



III. Methodology

Measurement

- **➤ Learning Engagement**:
 - √ Behavioural engagement
 - √ Affective engagement
 - √ Cognitive engagement

- **≻**Knowledge Test
 - √ 15 multiple-choice questions,

II. Methodology

Procedure .

Recruitment & Screening

Participants respond to recruitment and complete a demographic survey

Pre-Test

Complete a 15question multiplechoice pre-test

Learning Activities

VR Group experiences VR simulation; Control Group reads materials

Follow-up Test (4 Weeks Later)

Take a follow-up test to assess knowledge retention

On-site Orientation

Review information sheet and sign consent form

Group Assignment

Randomly assigned to VR or Control Group

Post-Test & Engagement Questionnaire

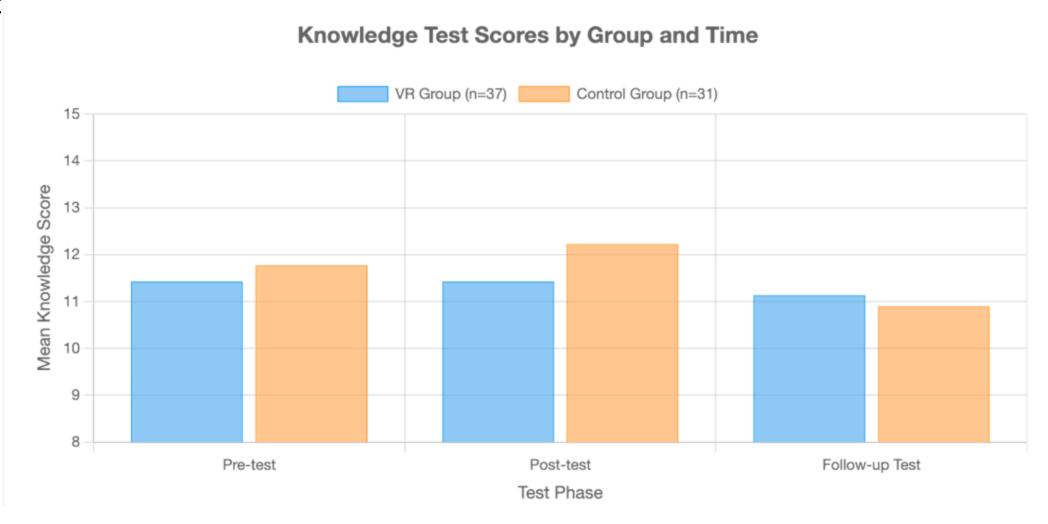
Complete post-test and engagement questionnaire

IV. Result

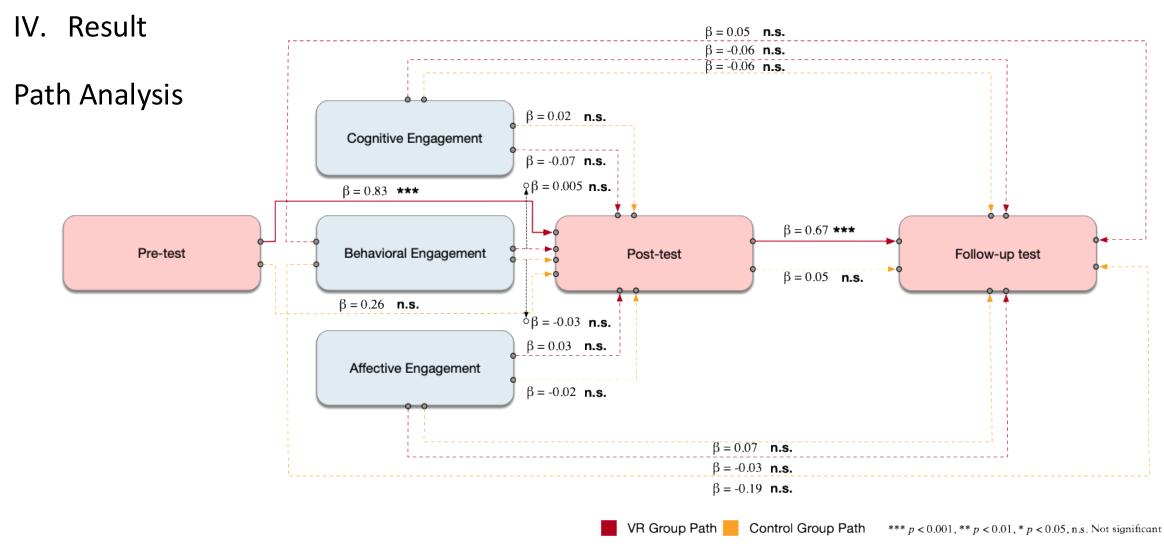
Demographics of the Participants

	Gender	Age
	$\mathrm{male}~(\%)$	mean(SD)
VR Group (n=37)	10 (50.00)	23.50 (4.39)
Control Group (n=31)	6(30.00)	$25.55 \ (7.92)$
Total (n=68)	31 (39.75)	$25.74 \ (7.02)$

IV. Result


Descriptive statistics of the learning engagement scores

	Group	Mean	SD
Dehavioural on ga gament	VR Group	18.51	3.185
Behavioural engagement	Control Group	18.65	2.905
Affactive on ma manage *	VR Group	21.92	3.954
Affective engagement*	Control Group	15.65	6.411
Cognitive engagement	VR Group	19.16	3.354
	Control Group	17.84	4.140
$\operatorname{Combined}^{\star}$	VR Group	59.59	8.971
ombined	Control Group	52.13	11.254


^{*} Significant Difference

IV. Result

IV. Discussion-RQ1

Main Takeaway:

➤ When the goal is to get learners emotionally invested and interested in a topic, a gamified, experiential approach in VR is a powerful strategy.

Why it Worked:

- ➤ The VR experience was more enjoyable and interesting than static text.
- Gamified feedback and challenges strengthened emotional connection.
- ➤ This high affective engagement drove the higher overall engagement score.

IV. Discussion-RQ2

Finding 1: No Short-Term Gain.

❖ The VR group did not score higher on the immediate post-test.

Possible Cause:

- ❖ The test may have been too easy ("ceiling effect").
- ❖ Different media often yield similar cognitive outcomes.

Finding 2: Better Long-Term Retention.

- ❖ The Control Group showed a "cram-and-forget" pattern.
- ❖ The VR Group's knowledge was more durable and stable over time.

IV. Discussion-RQ3

Main Takeaway:

➤ There was NO direct link between how engaged a student was and their knowledge test score..

Why the Disconnect?

- Engagement is the foundation for learning, not the final outcome
- ➤ The "novelty effect" of VR boosts excitement but not necessarily learning.
- ➤ Learning requires "pedagogical bridges" (e.g., reflection) to convert engagement into knowledge.

V. Conclusion & Future Work

- > VR Enhances Engagement: Experiential learning in a gamified VR simulation is highly effective at boosting learner engagement.
- ➤ VR Improves Retention: While it didn't lead to higher immediate test scores, the VR approach resulted in significantly better long-term knowledge retention compared to traditional methods.
- ➤ Engagement Isn't a Direct Path to Knowledge: A key finding was that high learner engagement, on its own, did not directly translate into measurable knowledge gains in our tests.

V. Conclusion & Future Work

Limitations to Consider:

- ➤ The Knowledge Test: The assessment may have been too simple, creating a "ceiling effect" that made it difficult to detect short-term knowledge gains.
- ➤ The Type of Learning Measured: The test focused on declarative knowledge (facts), which may not have captured the procedural or practical understanding developed in the VR simulation.

V. Conclusion & Future Work

Future Research Directions:

- ➤ **Design More Complex Assessments**: Develop more nuanced tests to better evaluate the deeper learning that may occur in experiential simulations.
- ➤ Measure Psychomotor and Affective Outcomes: Future studies should assess if the VR training improves practical skills (the application of Fitts' Law) and has a lasting impact on student attitudes.
- ➤ Investigate "Pedagogical Bridges": Research how to intentionally design instructional supports (e.g., guided reflection) to effectively convert high engagement into durable knowledge.

ICBL 2025

Bangkok| 22 – 25 | July 2025

Enhance Learner Engagement Through Experiential Learning in a Gamified Simulation: A Longitudinal Study

Chen Li, Jeff K. T. Tang, **Ye Jia***, Yufei Lu, Peter H. F. Ng, Laura Zhou, Jing Liu and Qing Li

